192 research outputs found

    Melatonin reduces TNF-a induced expression of MAdCAM-1 via inhibition of NF-kB.

    Get PDF
    BACKGROUND: Endothelial MAdCAM-1 (mucosal addressin cell adhesion molecule-1) expression is associated with the oxidant-dependent induction and progress of inflammatory bowel disease (IBD). Melatonin, a relatively safe, potent antioxidant, has shown efficacy in several chronic injury models may limit MAdCAM-1 expression and therefore have a therapeutic use in IBD. METHODS: We examined how different doses of melatonin reduced endothelial MAdCAM-1 induced by TNF-a in an in vitro model of lymphatic endothelium. Endothelial monolayers were pretreated with melatonin prior to, and during an exposure, to TNF-a (1 ng/ml, 24 h), and MAdCAM-1 expression measured by immunoblotting. RESULTS: MAdCAM-1 was induced by TNF-a. Melatonin at concentrations over 100 μm (10(-4) M) significantly attenuated MAdCAM-1 expression and was maximal at 1 mM. CONCLUSIONS: Our data indicate that melatonin may exert therapeutic activity in IBD through its ability to inhibit NF-kB dependent induction of MAdCAM-1

    Population-scale proteome variation in human induced pluripotent stem cells

    Get PDF
    Human disease phenotypes are driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines. We characterised the major genetic and non-genetic determinants of proteome variation across iPSC lines and assessed key regulatory mechanisms affecting variation in protein abundance. We identified 654 protein quantitative trait loci (pQTLs) in iPSCs, including disease-linked variants in protein-coding sequences and variants with trans regulatory effects. These include pQTL linked to GWAS variants that cannot be detected at the mRNA level, highlighting the utility of dissecting pQTL at peptide level resolution

    Hematopoietic Stem Cells Contribute to Lymphatic Endothelium

    Get PDF
    Although the lymphatic system arises as an extension of venous vessels in the embryo, little is known about the role of circulating progenitors in the maintenance or development of lymphatic endothelium. Here, we investigated whether hematopoietic stem cells (HSCs) have the potential to give rise to lymphatic endothelial cells (LEC). mice resulted in the incorporation of donor-derived LEC into the lymphatic vessels of spontaneously arising intestinal tumors.Our results indicate that HSCs can contribute to normal and tumor associated lymphatic endothelium. These findings suggest that the modification of HSCs may be a novel approach for targeting tumor metastasis and attenuating diseases of the lymphatic system

    Uncovering the Importance of Selenium in Muscle Disease

    Get PDF
    A connection between selenium bioavailability and development of muscular disorders both in humans and livestock has been established for a long time. With the development of genomics, the function of several selenoproteins was shown to be involved in muscle activity, including SELENON, which was linked to an inherited form of myopathy. Development of animal models has helped to dissect the physiological dysfunction due to mutation in the SELENON gene; however the molecular activity remains elusive and only recent analysis using both in vivo and in vitro experiment provided hints toward its function in oxidative stress defence and calcium transport control. This review sets out to summarise most recent findings for the importance of selenium in muscle function and the contribution of this information to the design of strategies to cure the diseases

    Vacuolar organization in the nodule parenchyma is important for the functioning of pea root nodules

    Get PDF
    Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces

    Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. Methods: Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. Results:The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v 1 ST ), intermediate (v 2 ST ) and least (v 3 ST ) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e 1 DTI ), intermediate (e 2 DTI ) and least (e 3 DTI ) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v 1 ST ) agreed well with that of diffusion (e 1 DTI ) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v 3 ST ) and diffusion (e 3 ST ) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v 3 ST ) and DTI (e 3 DTI ) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v 3 ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v 3 DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. Conclusions: We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations

    Age-Related Intraneuronal Elevation of αII-Spectrin Breakdown Product SBDP120 in Rodent Forebrain Accelerates in 3×Tg-AD Mice

    Get PDF
    Spectrins line the intracellular surface of plasmalemma and play a critical role in supporting cytoskeletal stability and flexibility. Spectrins can be proteolytically degraded by calpains and caspases, yielding breakdown products (SBDPs) of various molecular sizes, with SBDP120 being largely derived from caspase-3 cleavage. SBDPs are putative biomarkers for traumatic brain injury. The levels of SBDPs also elevate in the brain during aging and perhaps in Alzheimer’s disease (AD), although the cellular basis for this change is currently unclear. Here we examined age-related SBDP120 alteration in forebrain neurons in rats and in the triple transgenic model of AD (3×Tg-AD) relative to non-transgenic controls. SBDP120 immunoreactivity (IR) was found in cortical neuronal somata in aged rats, and was prominent in the proximal dendrites of the olfactory bulb mitral cells. Western blot and densitometric analyses in wild-type mice revealed an age-related elevation of intraneuronal SBDP120 in the forebrain which was more robust in their 3×Tg-AD counterparts. The intraneuronal SBDP120 occurrence was not spatiotemporally correlated with transgenic amyloid precursor protein (APP) expression, β-amyloid plaque development, or phosphorylated tau expression over various forebrain regions or lamina. No microscopically detectable in situ activated caspase-3 was found in the nuclei of SBDP120-containing neurons. The present study demonstrates the age-dependent intraneuronal presence of an αII-spectrin cleavage fragment in mammalian forebrain which is exacerbated in a transgenic model of AD. This novel neuronal alteration indicates that impairments in membrane protein metabolism, possibly due to neuronal calcium mishandling and/or enhancement of calcium sensitive proteolysis, occur during aging and in transgenic AD mice

    Three-Wall Segment (TriSeg) Model Describing Mechanics and Hemodynamics of Ventricular Interaction

    Get PDF
    A mathematical model (TriSeg model) of ventricular mechanics incorporating mechanical interaction of the left and right ventricular free walls and the interventricular septum is presented. Global left and right ventricular pump mechanics were related to representative myofiber mechanics in the three ventricular walls, satisfying the principle of conservation of energy. The walls were mechanically coupled satisfying tensile force equilibrium in the junction. Wall sizes and masses were rendered by adaptation to normalize mechanical myofiber load to physiological standard levels. The TriSeg model was implemented in the previously published lumped closed-loop CircAdapt model of heart and circulation. Simulation results of cardiac mechanics and hemodynamics during normal ventricular loading, acute pulmonary hypertension, and chronic pulmonary hypertension (including load adaptation) agreed with clinical data as obtained in healthy volunteers and pulmonary hypertension patients. In chronic pulmonary hypertension, the model predicted right ventricular free wall hypertrophy, increased systolic pulmonary flow acceleration, and increased right ventricular isovolumic contraction and relaxation times. Furthermore, septal curvature decreased linearly with its transmural pressure difference. In conclusion, the TriSeg model enables realistic simulation of ventricular mechanics including interaction between left and right ventricular pump mechanics, dynamics of septal geometry, and myofiber mechanics in the three ventricular walls

    Tephrochronology

    Get PDF
    Tephrochronology is the use of primary, characterized tephras or cryptotephras as chronostratigraphic marker beds to connect and synchronize geological, paleoenvironmental, or archaeological sequences or events, or soils/paleosols, and, uniquely, to transfer relative or numerical ages or dates to them using stratigraphic and age information together with mineralogical and geochemical compositional data, especially from individual glass-shard analyses, obtained for the tephra/cryptotephra deposits. To function as an age-equivalent correlation and chronostratigraphic dating tool, tephrochronology may be undertaken in three steps: (i) mapping and describing tephras and determining their stratigraphic relationships, (ii) characterizing tephras or cryptotephras in the laboratory, and (iii) dating them using a wide range of geochronological methods. Tephrochronology is also an important tool in volcanology, informing studies on volcanic petrology, volcano eruption histories and hazards, and volcano-climate forcing. Although limitations and challenges remain, multidisciplinary applications of tephrochronology continue to grow markedly
    corecore